资源类型

期刊论文 392

年份

2024 1

2023 53

2022 50

2021 27

2020 39

2019 24

2018 21

2017 20

2016 8

2015 16

2014 8

2013 16

2012 8

2011 10

2010 7

2009 11

2008 10

2007 12

2006 2

2005 4

展开 ︾

关键词

含能材料 4

固体氧化物燃料电池 4

增材制造 4

复合材料 4

机器学习 4

材料 4

4D打印 3

材料设计 3

三相界面 2

产业化 2

关键材料 2

凝固技术 2

压水堆 2

发展战略 2

形状记忆合金 2

膜材料 2

进展 2

&gamma 1

/III-V界面 1

展开 ︾

检索范围:

排序: 展示方式:

Hierarchically porous materials: Synthesis strategies and emerging applications

Minghui Sun, Chen Chen, Lihua Chen, Baolian Su

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 301-347 doi: 10.1007/s11705-016-1578-y

摘要: Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.

关键词: hierarchically porous materials     synthesis     application    

Hierarchically porous zeolites synthesized with carbon materials as templates

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1444-1461 doi: 10.1007/s11705-021-2090-6

摘要: Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.

关键词: hierarchical zeolites     carbon materials     direct templates     indirect templates     carbon-silica composites    

Heat transfer of phase change materials (PCMs) in porous materials

C Y ZHAO, D ZHOU, Z G WU

《能源前沿(英文)》 2011年 第5卷 第2期   页码 174-180 doi: 10.1007/s11708-011-0140-3

摘要: In this paper, the feasibility of using metal foams to enhance the heat transfer capability of phase change materials (PCMs) in low- and high-temperature thermal energy storage systems was assessed. Heat transfer in solid/liquid phase change of porous materials (metal foams and expanded graphite) at low and high temperatures was investigated. Organic commercial paraffin wax and inorganic calcium chloride hydrate were employed as the low-temperature materials, whereas sodium nitrate was used as the high-temperature material in the experiment. Heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied. Composites of paraffin and expanded graphite with a graphite mass ratio of 3%, 6%, and 9% were developed. The heat transfer performances of these composites were tested and compared with metal foams. The results indicate that metal foams have better heat transfer performance due to their continuous inter-connected structures than expanded graphite. However, porous materials can suppress the effects of natural convection in liquid zone, particularly for PCMs with low viscosities, thereby leading to different heat transfer performances at different regimes (solid, solid/liquid, and liquid regions). This implies that porous materials do not always enhance heat transfer in every regime.

关键词: heat transfer     thermal energy storage     phase change materials     natural convection     porous media    

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1593-1607 doi: 10.1007/s11705-023-2348-2

摘要: With increasing emphasis on green chemistry, biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials. Herein, a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition. This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose. With the synergistic effect of three heterogeneous components, the electrode achieves outstanding glucose sensing performance, including a high sensitivity (851.4 µA·mmol−1·L·cm−2), a short response time (2.2 s), a wide linear range (two stages: 0.001−8.145 and 8.145−35.500 mmol·L−1), strong immunity to interference, outstanding intraelectrode and interelectrode reproducibility, a favorable toxicity resistance (Cl), and a good long-term stability (maintaining 86.0% of the original value after 30 d). These data are superior to those of some traditional glucose sensors using nonbiomass substrates. When determining the blood glucose level of a human serum, this electrode realizes a high recovery rate of 97.07%–98.89%, validating the potential for high-performance blood glucose sensing.

关键词: cellulose nanofibril     aerogel     nickel-cobalt layered double hydroxide     polypyrrole     nonenzymatic glucose sensor    

Crystalline porous materials: from zeolites to metal-organic frameworks (MOFs)

Zaiku Xie, Bao-Lian Su

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 123-126 doi: 10.1007/s11705-020-1921-1

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1038-1050 doi: 10.1007/s11705-022-2279-3

摘要: Phase change materials are potential candidates for the application of latent heat storage. Herein, we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex, which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method. Furthermore, the multi-walled carbon nanotube or graphene oxide, which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency. These capsules owned a typical core–shell structure, with an extremely high polyethylene glycol loading up to 34.33 g∙g‒1. After loading of polyethylene glycol, the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g‒1, which was 98.5% of pure polyethylene glycol. Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability. Moreover, studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance. Considering their exceptional comprehensive features, innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.

关键词: cellulose     polyelectrolytes     phase change materials     thermal energy storage     light-to-thermal conversion    

Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing

Huaiwei Shi, Teng Zhou

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 49-59 doi: 10.1007/s11705-020-1959-0

摘要: Functional materials are widely used in chemical industry in order to reduce the process cost while simultaneously increase the product quality. Considering their significant effects, systematic methods for the optimal selection and design of materials are essential. The conventional synthesis-and-test method for materials development is inefficient and costly. Additionally, the performance of the resulting materials is usually limited by the designer’s expertise. During the past few decades, computational methods have been significantly developed and they now become a very important tool for the optimal design of functional materials for various chemical processes. This article selectively focuses on two important process functional materials, namely heterogeneous catalyst and gas separation agent. Theoretical methods and representative works for computational screening and design of these materials are reviewed.

关键词: heterogeneous catalyst     gas separation     solvent     porous adsorbent     material screening and design    

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 636-653 doi: 10.1007/s11705-019-1824-1

摘要: Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.

关键词: solar stream generation     plasmonics     porous carbon     photothermal materials     solar energy conversion efficiency     water vapor generation rate    

源于蛋清的新型分层轻质多孔碳用于高效微波吸收 Article

刘宗林, 赵旭, 徐亮亮, 彭庆宇, 赫晓东

《工程(英文)》 2022年 第18卷 第11期   页码 161-172 doi: 10.1016/j.eng.2022.04.026

摘要:

鸡蛋羹是一种在餐桌上常见的菜肴,在冷冻干燥后可得到均匀的多孔结构。鸡蛋羹中的蛋白质提供了丰富的碳和氮元素,并且鸡蛋羹的独特微观结构和可调节的电学参数使它成为一种潜在的多孔碳前驱体。本文以蛋清作为原材料,氮原位掺杂的多孔碳(NPC)和碳酸钾改性的NPC(PNPC)是通过一个简单的凝胶和碳化过程制备得到的。多孔碳的独特形貌继承于蛋白质,包括纤维簇、蜂窝孔和布满沟槽的骨架。这些结构具有优异的阻抗匹配和高效的内部损耗性能,使得到的多孔碳成为优异的无需金属元素掺杂的轻质电磁波吸收材料。作为多孔碳的代表之一,PNPC10-700 具有包括纤维簇、蜂窝孔和多孔骨架的多重
结构。并且,PNPC10-700 具有最大反射损耗值(66.15 dB;厚度为3.77 mm)和一个宽达5.82 GHz的有效吸收频段(从12.18 GHz到18 GHz,厚度为2.5 mm),这远超大部分文献中报道的数值。因此蛋清(蛋白质)的凝胶和后续碳化的结合是一种用于设计多孔碳吸波材料微观形貌和电磁性能的新方法。

关键词: 微波吸收     多孔碳     生物质     碳酸钾    

基于液滴微流控的分级结构反蛋白石多孔支架用于仿生三维细胞共培养 Article

邵长敏, 刘羽霄, 池俊杰, 叶方富, 赵远锦

《工程(英文)》 2021年 第7卷 第12期   页码 1778-1785 doi: 10.1016/j.eng.2020.06.031

摘要:

三维(3D)细胞培养具有更好地模拟天然组织特异性的优势,在药物开发、毒性测试和组织工程中发挥着重要作用。然而,现有的3D细胞培养的支架或微载体通常尺寸有限,并且在模拟生物体内血管复合体方面表现不佳。因此,本研究提出了一种通过简单的微流控方法制备的新型分级结构反蛋白石多孔支架,用于促进3D细胞共培养。该支架是基于微流控乳液液滴模板和惰性聚合物聚合的复合概念构建的。研究结果表明,该支架能够保证细胞培养过程中的营养供给,从而实现大面积的细胞培养。此外,通过在该支架中连续种植不同的细胞,本文还开发了内皮细胞包裹肝细胞的3D细胞共培养系统,用于构建功能化组织。研究结果表明,该支架用于细胞共培养系统,有助于维持肝细胞特定的体内功能。该分级结构反蛋白石多孔支架为3D细胞培养甚至仿生组织的构建奠定了基础。

关键词: 微流控     反蛋白石     细胞培养     液滴     生物材料    

Template-free synthesis of hierarchically macro-mesoporous Mn-TiO

Zhao Peng, Li-Hua Chen, Ming-Hui Sun, Pan Wu, Chang Cai, Zhao Deng, Yu Li, Wei-Hong Zheng, Bao-Lian Su

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 43-49 doi: 10.1007/s11705-017-1679-2

摘要: This study described a template-free method for the synthesis of hierarchically macro-mesoporous Mn-TiO catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO based catalysts was also investigated for the selective reduction of NO with NH . The results show that the catalytic performance of TiO based catalysts was improved greatly after Mn doping. Meanwhile, the Mn-TiO catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.

关键词: titania     hierarchically macro-mesoporous structure     Mn-doping     selective catalytic reduction    

生物医用有色金属材料研究现状与未来发展

关绍康,朱世杰,郑玉峰,王云兵,张兴栋

《中国工程科学》 2023年 第25卷 第1期   页码 104-112 doi: 10.15302/J-SSCAE-2023.01.008

摘要:

生物医用有色金属材料发展迅速,形成了适应不同体内环境、不同组织的医用有色金属材料及器件体系;着眼未来开展领域研究规划,提升新型医用有色金属材料及器件的临床应用水平,兼具理论研究与实践应用价值。本文论述了生物医用有色金属材料在耐蚀性、耐磨性、疲劳强度及韧性、生物适配性等方面的关键性能要求,系统梳理了永久性植入有色金属材料、生物可降解有色金属材料、多孔医用有色金属材料、医用有色金属表面改性等细分领域的研究进展、发展趋势与科学问题。在凝练各类生物医用有色金属材料未来研究方向的基础上,提出了加强基础与关键核心技术研究、组建“产学研医监”协同创新体、建立相关标准及规范、培育高精尖人才体系等发展建议,以期为新型材料发展布局与前沿技术研发提供先导性参考。

关键词: 生物医用有色金属材料;永久性植入有色金属材料;生物可降解有色金属材料;多孔医用有色金属材料;医用有色金属表面改性    

Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1065-1074 doi: 10.1007/s11705-023-2313-0

摘要: Lignocellulosic biomass such as plants and agricultural waste are ideal to tackle the current energy crisis and energy-related environmental issues. Carbon-rich lignin is abundant in lignocellulosic biomass, whose high-value transformation and utilization has been the most urgent problem to be solved. Herein, we propose a method for the preparation of porous carbon from lignin employing an H3PO4-assisted hydrothermal method. We characterize the as-prepared lignin-derived porous carbon and investigate its potential for energy storage. After assisted hydrothermal treatment followed by carbonization at 800 °C, the lignin-derived porous carbon displays a high specific capacitance (223.6 F·g–1 at 0.1 A·g–1) and excellent cycling ability with good capacitance retention. In this present study, the resultant lignin-derived porous carbon was used as the electrode of a supercapacitor, illustrating yet another potential high-value use for lignin, namely as a candidate for the sustainable fabrication of main supercapacitor components.

关键词: lignin     porous carbon     electrode     supercapacitor    

Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air

Pu ZHAO,Lizhong ZHU

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 219-228 doi: 10.1007/s11783-014-0760-z

摘要: Adsorption is the most widely used technology for the removal of indoor volatile organic compounds (VOCs). However, existing adsorbent-based technologies are inadequate to meet the regulatory requirement, due to their limited adsorption capacity and efficiency, especially under high relative humidity (RH) conditions. In this study, a series of new porous clay heterostructure (PCH) adsorbents with various ratios of micropores to mesopores were synthesized, characterized and tested for the adsorption of acetaldehyde and toluene. Two of them, PCH25 and PCH50, exhibited markedly improved adsorption capability, especially for hydrophilic acetaldehyde. The improved adsorption was attributed to their large micropore areas and high micropore-to-mesopore volume ratios. The amount of acetaldehyde adsorbed onto PCH25 at equilibrium reached 62.7 mg·g , eight times as much as the amount adsorbed onto conventional activated carbon (AC). Even at a high RH of 80%, PCH25 removed seven and four times more of the acetaldehyde than AC and the unmodified raw PCHs did, respectively. This new PCH optimized for their high adsorption and resistance to humidity has promising applications as a cost-effective adsorbent for indoor air purification.

关键词: porous clay heterostructure     volatile organic compounds     adsorption     adsorbent     indoor air    

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 364-379 doi: 10.1007/s11709-018-0470-x

摘要: The maximum entropy theory has been used in a wide variety of physical, mathematical and engineering applications in the past few years. However, its application in numerical methods, especially in developing new shape functions, has attracted much interest in recent years. These shape functions possess the potential for performing better than the conventional basis functions in problems with randomly generated coarse meshes. In this paper, the maximum entropy theory is adopted to spatially discretize the deformation variable of the governing coupled equations of porous media. This is in line with the well-known fact that higher-order shape functions can provide more stable solutions in porous problems. Some of the benchmark problems in deformable porous media are solved with the developed approach and the results are compared with available references.

关键词: maximum entropy FEM     fully coupled multi-phase system     porous media    

标题 作者 时间 类型 操作

Hierarchically porous materials: Synthesis strategies and emerging applications

Minghui Sun, Chen Chen, Lihua Chen, Baolian Su

期刊论文

Hierarchically porous zeolites synthesized with carbon materials as templates

期刊论文

Heat transfer of phase change materials (PCMs) in porous materials

C Y ZHAO, D ZHOU, Z G WU

期刊论文

Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered

期刊论文

Crystalline porous materials: from zeolites to metal-organic frameworks (MOFs)

Zaiku Xie, Bao-Lian Su

期刊论文

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

期刊论文

Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing

Huaiwei Shi, Teng Zhou

期刊论文

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

期刊论文

源于蛋清的新型分层轻质多孔碳用于高效微波吸收

刘宗林, 赵旭, 徐亮亮, 彭庆宇, 赫晓东

期刊论文

基于液滴微流控的分级结构反蛋白石多孔支架用于仿生三维细胞共培养

邵长敏, 刘羽霄, 池俊杰, 叶方富, 赵远锦

期刊论文

Template-free synthesis of hierarchically macro-mesoporous Mn-TiO

Zhao Peng, Li-Hua Chen, Ming-Hui Sun, Pan Wu, Chang Cai, Zhao Deng, Yu Li, Wei-Hong Zheng, Bao-Lian Su

期刊论文

生物医用有色金属材料研究现状与未来发展

关绍康,朱世杰,郑玉峰,王云兵,张兴栋

期刊论文

Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors

期刊论文

Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air

Pu ZHAO,Lizhong ZHU

期刊论文

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

期刊论文